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I 
I INTRODUCTION 
I 

The need for weight saving in a cylindrical or conical missile body 
I 

section has resulted in the use of r ing stiffeners and axial stiffeners to 

insure structural  integrity and stability. This need has also resulted in the 

development of single -faced or double faced corrugated construction and in 

the use of ribbed stiffened monolithic structures fabricated by milling. 
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A circular conical shell manufactured as mentioned above can be 
I 

I considered by representing it by an equivalent orthotropic shell. The 

I 
general Donnell type instability differential equation for such a shell can be 

determined by an energy analysis similar to the procedure used in Refer- 

ence (1) for an orthotropic cylindrical shell. 

In the present paper a set of instability equilibrium equations for an  

orthotropic circular conical shell are  derived by applying variational 

methods to the expression for the total energy of the shell. 

librium equations an eighth order differential equation of the Donnell type is 

obtained for a circular conical shell segment of uniform thickness subjected 

to an external hydrostatic pressure and a compressive axial force. 

From these equi- 
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STRESS -STRAIN 

s I 

The circular conical shell geometry is shown in Figure (1) together 

with the coordinate system used and the corresponding middle-surface 

displacements. In t e rms  of the shell middle-surface displacements, , 

, and u, the expressions used for  the buckling strains in the shell wall 

d re  written a s  follows: 

where CrJ , 
strains,  respectively; and a comma indicates differentiation with respect to 

the succeeding variables. 

, and ese, a r e  the generatrix, circumferential, and shear  

For a homogenous orthotropic material, the s t r e s s  -strain relations 

in generalized plane s t r e s s  can be written a s  
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In the above equations E 
ticity averaged over the thickness in the generatrix and circumferential di- 

rections, respectively; G is the average shear  modulus, and -&,and l )bs  
are Poissonls ratios. 

and E 6 a re  the values of the moduli of elas- 

For convenience in la ter  calculations, the following constants and 

notations, similar to those given in Reference (l), are introduced: 

where (q is the thickness of the shell. The following stress resultants a r e  

also defined: 

Bqsed on Maxwell Is reciprocal theorem, the following relationship 

must hold between the elastic constants: 
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STRAIN ENERGY AND TOTAL ENERGY EXPRESSIONS 
The instability differential equations of equilibrium wi l l  be derived 

using the same procedure as given in Reference (1). For an elastic system, a 

criteEion of bucklirig is that the variatiohof the change in theenergy of the system 

due to buckling, with respect to the displacements, must be zero. Described 

mat he mat ic ally , this c ri te rim; becomes 

where  

in the potential energy of the external forces during the buckling process. 

is the change in the strain energy of the shell and v is the change 

If initial bending s t resses  are neglected 

and ese are the membrane s t resses  , - c 

In the preceding expression GS , 
existing in the shell in the compressed but unbuckled state; , , and 

E e  are the s t resses  superimposed during the buckling process, and 

is the volume of the shell wall. 
Vs 

For a circular cone frustum with an applied hydrostatic pressure 

and an axial compressive force Q , the following membrane s t resses ,  ob- 

tained from References (3) and (4), are used in this analysis: 

is@ = 0 
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The preceding expressions are based on the assumptions that the boundary 

conditions, such as ring-stiffened edges, do not permit pre-buckling bend- 

ing o r  shear  s t resses  to exist. 

Based on the preceding limitations and assumptions the change in the 

potential energy of the external forces during the buckling process is: 

where -fc is the volume enclosed by the shell and 5, 
boundary values of 5 for circular cone frustum. The first integral in  the 

preceding expression, which is the pressure times the shell volume change, 

is the work done by the hydrostatic pressure 

the work done by the stress resultants in the generatrix direction as a 

result of the boundary displacements at the edges of the cone frustum during 

the buckling process. 

and SO are the 

. The second integral is P 

From the geometry of the shell the following relations are obtained: 

where As is the area of the middle surface of the shell. 

By combining Equations (2), (4), (5), (7), (9), and (lo), the expres- 

sion for the total energy vi- V can be written as follows: 
su 2 3  - 

a + V  I%, I, [<NS~ C = S ~  + Nab + k e  es&) s -4 do d~ 
ya So '1F 

+ i.& 5, @-%JL4-'( G%b s, + Eae:o 

+2-JesEs c+ss eee + G @L][X AH] d e  ds dt 

Also from the geometry of the shell the following expression is ob- 

tained for the work done by the hydrostatic pressure: 
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In the preceding expression and in the succeeding development the te rms  

involving the displacement V a r e  considered negligible and are omitted. 

By substituting Equations (l), (3), (5), ( 8 ) ,  and (12) into Equation 

(ll), and retaining only te rms  up to the second order,  the following expres- 

sion for the total energy M .+Y is obtained in t e rms  of the displacements 

LL , \I , U , and their  derivatives: 



EQUILIBRIUM EQUATIONS AND NATURAL BOUNDARY CONDITIONS RE - 
SULTING FROM THE APPLICATION OF VARIATIONAL PROCEDURES 

The following expression for the variation in the total energy is 

obtained from Equation (13): 

Integration of Equation (14) by parts results in the following 

expression: 
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-=(k&JfJ>&) nr-)ls& +[(D,/s;(-3es w,,5 LSGOC) +@a/s~@)scsc.c 

+ % & e  c d  .C)] 6 \"J, &]" 0 As * ( ! D ~ / & ~ ~ ~ + X  s W,Io -%Ll 56 WT 

=I 0 
1 6 w  

(1 6) 
The changes in  the total energy of the cone must vanish for  any a r -  

bitrary virtual displacements when the system is in equilibrium. 

the following three equations of equilibrium a r e  obtained from Equation (15): 

As a result 
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A PARTICULAR SOLUTION FOR THE EQUILIBRIUM EQUATIONS AND THE 

DEVELOPMENT OF A DONNELL TYPE DIFFERENTIAL EQUATION 

F o r  convenience the constants in the equilibrium equations are ex- 

pressed in a non-dimensional form; and, as a result, Equations (16), (l?), 
and (18) are written in the following manner: 



Equations (19a) through (19h) are written in the following manner so  that the 

natural boundary conditions a r e  also expressed in a non-dimensional form. 
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Let S o  be designated as the value of 5 at the base of the cone 

frustum. Then a non-dimensional coordinate in the generatrix direction is 

defined in the following manner: 

Equations (16) 
by making the following substitutions: 

(17) and (18) can be reduced to ordinary differential equations 

k = S o F  & M e  (2 6 )  

v = S ~ F  (2 7) 

w = s ~ F  & n e  (2 €3) 

In the preceding expressions y1 is an integer and represents the number of 

buckling waves in the circumferential direction; and F and 2 are 

non-dimensional functions of 5 . 
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After the substitution of Equations (25) to (28) into Equations (20), 

(21), and (22) and after all the indicated operations have been performed, the 

following differential equations in 7 , , and HI result: 

It is easily seen that the functions assumed in Equations (26), (27), I 

l 
l 

and (28) satisfy the boundary conditions given by Equations (19b), (19d), (lgf), 

and (19h). 

(Na) ,  (19c), (19e), and (19g) results in the following expressions for the 

natural boundary conditions that contain only the dimensionless coordinate 

The substitution of Equations (26), (27), and (28) into Equations 

. 
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After very lengthy mathematical manipulations , Equations (29) , (30) , 

and (31) can be reduced to the following Donnell-type eithth order differential 

equation in te rms  of the function : 

(36) 

where the 

d, , dZ , and dS , the rigidity coefficients p ,  , D+ , and D3 , the apex 

angle d , the applied pressure , and the axial load Q . 

are constants that a r e  functions of the stiffness coefficients 

Because the constant coefficients, T;; , a r e  extremely long, they 

are included in a separate appendix. This appendix can be obtained by writing 

to the Bureau of Engineering Research, P. 0. Box 6162, University, Alabama. 

CONCLUSION 

At f i rs t  glance it would seem to require a prohibitive amount of 

t ime to obtain practical results from Equation (36). 
digital computer and the application of an approximate method, such as the 

Galerkin method employed in Reference (5) , could possibly yield meaningful 

practical results in a reasonable amount of time when such results a r e  highly 

desirable. A solution of the type suggested in Reference (6) might also 

prove feasible. 

The u s e  of a high speed 

The effort of this paper clearly shows the great mathematical diffi- 

culty posed by the problem of the determination of the instability cr i ter ia  for 

a stiffened cone frustum subjected to a combination of loads. 

with this problem, and the problem posed in Reference (2), a very serious 

ne-ed exists for  the mathematical investigation of the solution of a n  eighth 

order  linear homogenous differential equation with variable coefficients and 

the determination of the physical instability criteria represented by such an 

In connection 

equation. 
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NOTATION 

e=, e-. e8s 

Es, IF* 

G 

h 
n 

kss, Necr,Zts 

P 
Q 

So, 51 

5 

U 

V 

Constants that are functions of the exten- 
sional and shear stiffnesses, the bending 
and twist rigidities, the applied pressure,  
and the axial load. 

Area of the middle surface of the shell 

Bending and twist rigidities of an ele- 
mental area of an orthotropic circular 
conical shell 

Generatrix, circumferential and shearing 
strain 

Moduli of elasticity for orthotropic circu- 
lar conical shell 

Functions of the non-dimensional coordi- 
nate in the generatrix direction 

Shear modulus for orthotropic circular 
conical shell 

Wall thickness of circular conical shell 

Integer that indicates buckled mode in the 
circumferential direct ion 

Generatrix, circumferential and shear 
s t ress  resultants per  unit length 

Radial or hydrostatic pressure 

Axial compressive load 

Generatrix, circumferential and radial 
coordinates of cone middle surface 

Generatrix coordinates of the base and the 
top of circular cone frustum 

Non-dimensional coordinate in the genera- 
trix direction 

Generatrix, circumferential and radial 
displacements of cone middle surface 

Change in the strain energy of the shell 
during the buckling process 

Change in the potential energy of the ex- 
ternal forces during the buckling process 
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v c  
v s  

Volume enclosed by the shell 

Volume of the shell wal l  

Apex angle of cone o r  cone frustum extended 

Extensional and shearing stiffnesses of 
orthotropic conical shell 

Poissonls ratios for orthotropic shell 

res Generatrix, circumferential and shearing 
s t resses  

 LA 

d,,o(,, d3 

Vse, 

br &,%s,Gii,G, 9 ) 
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